行列式依行展开是计算行列式的一种方法,设ai1,ai2,…,ain (1≤i≤n)为n阶行列式D=|aij|的任意一行中的元素 , 而Ai1,Ai2,…,Ain分别为它们在D中的代数余子式,则D=ai1Ai1+ai2Ai2+…+ainAin称为行列式D的依行展开 。
行列式性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA 。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列) 。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样 。
4、行列式A中两行(或列)互换,其结果等于-A 。
【n阶行列式按行展开的定义】5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A 。
以上就是n阶行列式按行展开的定义的内容啦,希望本文可以帮到你!
- 初学三阶魔方教程 步骤解析
- 简述沃拉斯四阶段创新思维模式
- 胃肠间质瘤的四个阶段 按危险级别划分
- 陈在古文中的解释
- 汽车刷阶什么意思
- 欧洲的历史发展的阶段
- 石榴怎么做成盆栽
- 大专有学位证吗
- 行列式的计算方法
- 马克思主义认为阶级斗争的根源是
